Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Pharm Des ; 23(23): 3325-3341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28571553

RESUMO

There is an urgent need for the identification and validation of new therapeutic targets in protozoan parasites because currently available drugs are limited in number and usefulness, and no vaccines are available. The discovery that alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, is an efficacious treatment for African Sleeping Sickness caused by the protozoan parasite Trypanosoma brucei, has validated the polyamine pathway as a target in protozoan parasites. Polyamines are ubiquitous organic cations that play critical roles in key cellular processes such as growth, differentiation, and macromolecular biosynthesis. In recent years, remarkable progress has been made in the characterization of the polyamine pathway in a variety of protozoan parasites and this review will highlight surprising and unique features that could lead to new therapeutic strategies.


Assuntos
Antiprotozoários/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Parasitos/efeitos dos fármacos , Poliaminas/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Animais , Humanos , Parasitos/metabolismo , Poliaminas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/metabolismo
3.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795357

RESUMO

Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.


Assuntos
Arginase/metabolismo , Leishmania donovani/metabolismo , Animais , Células Cultivadas , Citosol/metabolismo , Citosol/parasitologia , Feminino , Leishmania infantum/metabolismo , Leishmania infantum/parasitologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microcorpos/metabolismo , Microcorpos/parasitologia , Ornitina Descarboxilase/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo
4.
Mol Biochem Parasitol ; 208(2): 74-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27343371

RESUMO

Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.


Assuntos
Monofosfato de Adenosina/metabolismo , GMP Redutase/genética , GMP Redutase/metabolismo , Guanosina Monofosfato/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Técnicas de Silenciamento de Genes , Genótipo , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Leishmania donovani/crescimento & desenvolvimento , Mutação , Fenótipo , Transporte Proteico , Purinas/metabolismo , Interferência de RNA
5.
Antimicrob Agents Chemother ; 60(8): 4972-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297476

RESUMO

Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics.


Assuntos
Antiprotozoários/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Leishmania/efeitos dos fármacos , Quinolonas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NAD/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
PLoS One ; 11(4): e0152715, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050410

RESUMO

Trypanosoma cruzi is incapable of synthesizing putrescine or cadaverine de novo, and, therefore, salvage of polyamines from the host milieu is an obligatory nutritional function for the parasite. A high-affinity diamine transporter (TcPOT1) from T. cruzi has been identified previously that recognizes both putrescine and cadaverine as ligands. In order to assess the functional role of TcPOT1 in intact parasites, a Δtcpot1 null mutant was constructed by targeted gene replacement and characterized. The Δtcpot1 mutant lacked high-affinity putrescine-cadaverine transport capability but retained the capacity to transport diamines via a non-saturable, low-affinity mechanism. Transport of spermidine and arginine was not impacted by the Δtcpot1 lesion. The Δtcpot1 cell line exhibited a significant but not total defect in its ability to subsist in Vero cells, although initial infection rates were not affected by the lesion. These findings reveal that TcPOT1 is the sole high-affinity diamine permease in T. cruzi, that genetic obliteration of TcPOT1 impairs the ability of the parasite to maintain a robust infection in mammalian cells, and that a secondary low-affinity uptake mechanism for this key parasite nutrient is operative but insufficient for optimal infection.


Assuntos
Diaminas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Trypanosoma cruzi/patogenicidade , Virulência
7.
Mol Microbiol ; 101(2): 299-313, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27062185

RESUMO

Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment.


Assuntos
Nucleotídeos de Adenina/metabolismo , Leishmania donovani/metabolismo , Purinas/metabolismo , Adenina/metabolismo , Guanina/metabolismo , Nucleotídeos de Guanina/metabolismo , Nucleotídeos de Purina/metabolismo , Purinas/química , Inanição
8.
Mol Microbiol ; 100(5): 824-40, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26853689

RESUMO

The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-ß-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.


Assuntos
Trifosfato de Adenosina/metabolismo , Cistationina beta-Sintase/genética , GMP Redutase/genética , Regulação da Expressão Gênica , IMP Desidrogenase/genética , Leishmania donovani/enzimologia , Leishmania major/enzimologia , Catálise , Escherichia coli/genética , GMP Redutase/isolamento & purificação , GMP Redutase/metabolismo , Teste de Complementação Genética , Guanosina Monofosfato/metabolismo , IMP Desidrogenase/metabolismo , Cinética , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Modelos Moleculares , NADP/metabolismo , Nucleotídeos/metabolismo
9.
Mol Biochem Parasitol ; 204(2): 89-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26844641

RESUMO

We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels. In addition, the modular configuration of the vectors allows drug resistance cassettes and other components to be readily exchanged. In toto, these vectors should be useful additions to the toolkit available for molecular and genetic studies of Leishmania donovani.


Assuntos
Vetores Genéticos/genética , Leishmania donovani/genética , Regiões Promotoras Genéticas , Ribossomos/genética , Perfilação da Expressão Gênica , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leishmania donovani/metabolismo , Ribossomos/metabolismo , Transgenes
10.
J Proteomics ; 102: 44-59, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24631822

RESUMO

Visceral leishmaniasis (VL) caused by Leishmania donovani is a systemic protozoan disease that is fatal if left untreated. The promastigote form of L. donovani is sensitive to growth inhibition by dl-α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), the first enzyme of the polyamine biosynthetic pathway. Exposure of a wild type (DI700) cell population to gradually increasing concentrations of DFMO resulted in the selection of a strain of Leishmania (DFMO-16), which was capable of proliferating in 16mM DFMO. To elucidate the molecular basis for this resistance, we undertook a comparative proteomic analysis of DFMO-resistant/sensitive parasites using isobaric tagging for relative and absolute quantification (iTRAQ/LC-MS/MS). Out of the 101 proteins identified in at least 2 of the 3 independent experiments, 82 proteins are 1.5- to 44.0-fold more abundant in DFMO-resistant strain (DFMO-16) while 19 are 2- to 5.0-fold less abundant as compared to the wild-type (DI700) parasites. Proteins with 2-fold or greater abundance in the DFMO-resistant strain include free radical detoxification, polyamine and trypanothione metabolic proteins, proteins involved in metabolism, intracellular survival and proteolysis, elongation factors, signaling molecules and mitochondrial transporters, and many with no annotated function. Differentially modulated proteins contribute to our understanding of molecular mechanism of DFMO-resistance and have the potential to act as biomarkers. BIOLOGICAL SIGNIFICANCE: This study will facilitate a deeper understanding of the phenomenon of acquired drug resistance and possible biomarkers in Leishmania against antiparasitic drug DFMO. Also it will provide information about the metabolic pathways modulated in resistant parasites as an adaptation mechanism to counter drugs. Studies like this are important to safeguard the efficacy of a limited repertoire of anti-parasitic drugs, and to lead the development of new drugs and drug combinations.


Assuntos
Resistência a Medicamentos , Eflornitina/química , Leishmania donovani/metabolismo , Proteômica/métodos , Biomarcadores/química , Cromatografia Líquida , Radicais Livres , GTP Fosfo-Hidrolases/química , Glutationa/análogos & derivados , Glutationa/química , Espectrometria de Massas , Ornitina Descarboxilase/química , Peptídeos/química , Poliaminas/química , Dobramento de Proteína , Transdução de Sinais , Espermidina/análogos & derivados , Espermidina/química , Frações Subcelulares/química
11.
J Biol Chem ; 288(41): 29954-64, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23986453

RESUMO

The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 µM for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 µM for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.


Assuntos
Leishmania donovani/enzimologia , Pentosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Pirimidinas/biossíntese , Uracila/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cromatografia em Gel , Estabilidade Enzimática , Retroalimentação Fisiológica/efeitos dos fármacos , Fluoruracila/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Leishmania donovani/genética , Leishmania donovani/metabolismo , Mutação , Pentosiltransferases/química , Pentosiltransferases/genética , Fosforribosil Pirofosfato/metabolismo , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Pirimidinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria , Especificidade por Substrato , Temperatura , Tiouracila/análogos & derivados , Tiouracila/metabolismo
12.
Mol Biochem Parasitol ; 190(2): 51-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23845934

RESUMO

6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Aminoidrolases/metabolismo , Leishmania donovani/metabolismo , Adenina Fosforribosiltransferase/genética , Aminoidrolases/genética , Deleção de Genes , Leishmania donovani/genética , Redes e Vias Metabólicas
13.
Arch Biochem Biophys ; 535(2): 163-76, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583962

RESUMO

Arginase from parasitic protozoa belonging to the genus Leishmania is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme catalyzes the first committed step in the biosynthesis of polyamines that enable cell growth and survival. The high resolution X-ray crystal structures of the unliganded form of Leishmania mexicana arginase (LmARG) and four inhibitor complexes are now reported. These complexes include the reactive substrate analogue 2(S)-amino-6-boronohexanoic acid (ABH) and the hydroxylated substrate analogue nor-N(ω)-hydroxy-l-arginine (nor-NOHA), which are the most potent arginase inhibitors known to date. Comparisons of the LmARG structure with that of the archetypal arginase, human arginase I, reveal that all residues important for substrate binding and catalysis are strictly conserved. However, three regions of tertiary structure differ between the parasitic enzyme and the human enzyme corresponding to the G62 - S71, L161 - C172, and I219 - V230 segments of LmARG. Additionally, variations are observed in salt link interactions that stabilize trimer assembly in LmARG. We also report biological studies in which we demonstrate that localization of LmARG to the glycosome, a unique subcellular organelle peculiar to Leishmania and related parasites, is essential for robust pathogenesis.


Assuntos
Arginase/química , Leishmania mexicana/enzimologia , Proteínas de Protozoários/química , Aminocaproatos/química , Aminocaproatos/farmacologia , Animais , Antiparasitários/farmacologia , Arginase/antagonistas & inibidores , Arginina/análogos & derivados , Arginina/química , Arginina/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Cristalografia por Raios X , Feminino , Humanos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/enzimologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ornitina/química , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Protozoários/antagonistas & inibidores
14.
Biochem J ; 452(3): 423-32, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23535070

RESUMO

The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural determinants critical for function of these permeases are unknown. To elucidate the key residues involved in putrescine translocation and recognition by this APC family member, a homology model of TcPOT1.1 was constructed on the basis of the atomic co-ordinates of the Escherichia coli AdiC arginine/agmatine antiporter crystal structure. The TcPOT1.1 homology model consisted of 12 transmembrane helices with the first ten helices organized in two V-shaped antiparallel domains with discontinuities in the helical structures of transmembrane spans 1 and 6. The model suggests that Trp241 and a Glu247-Arg403 salt bridge participate in a gating system and that Asn245, Tyr148 and Tyr400 contribute to the putrescine-binding pocket. To test the validity of the model, 26 site-directed mutants were created and tested for their ability to transport putrescine and to localize to the parasite cell surface. These results support the robustness of the TcPOT1.1 homology model and reveal the importance of specific aromatic residues in the TcPOT1.1 putrescine-binding pocket.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Cadaverina/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Putrescina/química , Trypanosoma cruzi/enzimologia , Sistemas de Transporte de Aminoácidos/metabolismo , Cadaverina/metabolismo , Células Cultivadas , Ligantes , Proteínas de Membrana Transportadoras/metabolismo , Valor Preditivo dos Testes , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Putrescina/metabolismo
15.
J Biol Chem ; 288(13): 8977-90, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23404497

RESUMO

Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L. donovani, Δadss and Δasl parasites in culture exhibited a profoundly restricted growth phenotype in which the only permissive growth conditions were a 6-aminopurine source in the presence of 2'-deoxycoformycin, an inhibitor of adenine aminohydrolase activity. Although both knock-outs showed a diminished capacity to infect murine peritoneal macrophages, only the Δasl null mutant was profoundly incapacitated in its ability to infect mice. The enormous discrepancy in parasite loads observed in livers and spleens from mice infected with either Δadss or Δasl parasites can be explained by selective accumulation of adenylosuccinate in the Δasl knock-out and consequent starvation for guanylate nucleotides. Genetic complementation of a Δasl lesion in Escherichia coli implied that the L. donovani ASL could also recognize 5-aminoimidazole-(N-succinylocarboxamide) ribotide as a substrate, and purified recombinant ASL displayed an apparent Km of ∼24 µm for adenylosuccinate. Unlike many components of the purine salvage pathway of L. donovani, both ASL and ADSS are cytosolic enzymes. Overall, these data underscore the paramount importance of ASL to purine salvage by both life cycle stages of L. donovani and authenticate ASL as a potential drug target in Leishmania.


Assuntos
Adenilossuccinato Liase/fisiologia , Adenilossuccinato Sintase/fisiologia , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Sintase/deficiência , Adenilossuccinato Sintase/genética , Animais , Transtorno Autístico , Clonagem Molecular , Desenho de Fármacos , Feminino , Teste de Complementação Genética , Cinética , Leishmania donovani/fisiologia , Fígado/metabolismo , Fígado/parasitologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fases de Leitura Aberta , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Purinas/metabolismo , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
16.
Cell Host Microbe ; 13(1): 5-7, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23332151

RESUMO

Trypanosoma cruzi has a complex relationship with its mammalian host in which parasite and host metabolic networks are intertwined. A genome-wide functional screen of T. cruzi infection in HeLa cells (Caradonna et al., 2013) divulges host metabolic functions and signaling pathways that impact intracellular parasite replication and reveals potential targets for therapeutic exploitation.

17.
Trends Parasitol ; 28(8): 345-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22726696

RESUMO

Purine nucleotides function in a variety of vital cellular and metabolic processes including energy production, cell signaling, synthesis of vitamin-derived cofactors and nucleic acids, and as determinants of cell fate. Unlike their mammalian and insect hosts, Leishmania cannot synthesize the purine ring de novo and are absolutely dependent upon them to meet their purine requirements. The obligatory nature of purine salvage in these parasites, therefore, offers an attractive paradigm for drug targeting and, consequently, the delineation of the pathway has been under scientific investigation for over 30 years. Here, we review recent developments that reveal how purines flux in Leishmania and offer a potential 'Achilles' heel' for future validation.


Assuntos
Leishmania/fisiologia , Leishmaniose/parasitologia , Nucleotídeos de Purina/metabolismo , Animais , Leishmania/genética , Leishmania/metabolismo , Leishmaniose/metabolismo
18.
J Biol Chem ; 287(16): 12759-70, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22367196

RESUMO

Protozoan parasites of the Leishmania genus express the metabolic machinery to synthesize pyrimidine nucleotides via both de novo and salvage pathways. To evaluate the relative contributions of pyrimidine biosynthesis and salvage to pyrimidine homeostasis in both life cycle stages of Leishmania donovani, individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme in pyrimidine biosynthesis, uracil phosphoribosyltransferase (UPRT), a salvage enzyme, or both CPS and UPRT were constructed. The Δcps lesion conferred pyrimidine auxotrophy and a growth requirement for medium supplementation with one of a plethora of pyrimidine nucleosides or nucleobases, although only dihydroorotate or orotate could circumvent the pyrimidine auxotrophy of the Δcps/Δuprt double knockout. The Δuprt null mutant was prototrophic for pyrimidines but could not salvage uracil or any pyrimidine nucleoside. The capability of the Δcps parasites to infect mice was somewhat diminished but still robust, indicating active pyrimidine salvage by the amastigote form of the parasite, but the Δcps/Δuprt mutant was completely attenuated with no persistent parasites detected after a 4-week infection. Complementation of the Δcps/Δuprt clone with either CPS or UPRT restored infectivity. These data establish that an intact pyrimidine biosynthesis pathway is essential for the growth of the promastigote form of L. donovani in culture, that all uracil and pyrimidine nucleoside salvage in the parasite is mediated by UPRT, and that both the biosynthetic and salvage pathways contribute to a robust infection of the mammalian host by the amastigote. These findings impact potential therapeutic design and vaccine strategies for visceral leishmaniasis.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Leishmania donovani/genética , Leishmaniose Visceral , Pentosiltransferases/metabolismo , Pirimidinas/biossíntese , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Feminino , Homeostase/fisiologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/metabolismo , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/imunologia , Vacinas contra Leishmaniose/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/microbiologia , Leishmaniose Visceral/prevenção & controle , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Pentosiltransferases/genética , Fosforilação/fisiologia , Pirimidinas/metabolismo , Uracila/metabolismo , Uridina/genética , Uridina/metabolismo
19.
J Biol Chem ; 287(10): 7626-39, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22238346

RESUMO

Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent K(m) of 15.4 µM, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that Δaah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The Δaah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The Δaah lesion was also introduced into a conditionally lethal Δhgprt/Δxprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2'-deoxycoformycin. The Δaah/Δhgprt/Δxprt triple knock-out no longer required 2'-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani.


Assuntos
Aminoidrolases/metabolismo , Leishmania donovani/enzimologia , Leishmaniose Visceral/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Aminoidrolases/química , Aminoidrolases/genética , Animais , Catálise , Deleção de Genes , Humanos , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Leishmaniose Visceral/genética , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
20.
Mol Biochem Parasitol ; 180(2): 123-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907738

RESUMO

Leishmania cannot synthesize purines de novo and therefore must scavenge purines from its host for survival and growth. Biochemical and genomic analyses have indicated that Leishmania species express three potential routes for the synthesis of guanylate nucleotides: (1) a two-step pathway that converts IMP to GMP; (2) a three-step pathway that starts with the deamination of guanine to xanthine, followed by phosphoribosylation to XMP and then conversion to GMP; or (3) direct guanine phosphoribosylation by HGPRT. To determine the role of the first of these pathways to guanylate nucleotide synthesis, an L. donovani line deficient in IMP dehydrogenase (IMPDH), the first step in the IMP to GMP pathway, was constructed by targeted gene replacement. The Δimpdh lesion triggered a highly restrictive growth phenotype in promastigotes in culture but did not impact parasitemias in mice. The dispensability of IMPDH in vivo is the first definitive demonstration that intracellular L. donovani amastigotes have access to a sufficient pool of guanine, xanthine, or guanylate precursors from the host.


Assuntos
IMP Desidrogenase/deficiência , Leishmania donovani/enzimologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania infantum/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Guanosina Monofosfato/metabolismo , Humanos , IMP Desidrogenase/genética , Leishmania donovani/genética , Leishmania donovani/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Proteínas de Protozoários/genética , Ribonucleotídeos/metabolismo , Xantina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...